自己組織化マップによるアルミニウム合金のテクスチャ評価方法* Texture evaluation method of aluminum alloy by self-organizing map

吉田 瞬 Shun YOSHIDA**
 若林 祐次 Yuji WAKABAHASHI ***
 小川 毅彦 Takehiko OGAWA****
 杉林 俊雄 Toshio SUGIBAYASHI****

Abstract

Surface texture of products needs the sensitive information for adding high-value to the products. It needs the technology method to convey sensitive information for designing and producing products. For this purpose, the method using a self-organizing map (an unsupervised learning neural network) was presented in this report. An aluminum alloy, shot blasted, was used for a specimen and its surface texture parameters were evaluated by self-organizing map. The surface texture parameters: arithmetic mean height; arithmetic mean roughness; glossiness; lightness are measured and the relation of these parameters was shown on the self-organizing map. This map showed clearly the relation of these parameters and it indicates that the self-organizing map can be used for the evaluation of aluminum alloy texture shot blasted.

Keywords: Surface texture, Self-organizing map, Shot blasted, Aluminum alloy.

1. 緒言

外観材の表面を設計する際,他社との差別化を図るため, 表面の凹凸形状のみならず,表面色や光沢度等の因子を同時 に考慮した高付加価値化が要求されている¹⁻⁴⁾。しかし,表面 の凹凸形状を変更すると,その表面色や光沢度,曇り度等も 変化する。すなわち,外観設計を行うためには,種々の因子 の相関関係についても考慮する必要がある。そのため,工業 製品の設計・製造おける外観材の決定には多くの時間や労力 を費やさなくてはならない。外観設計の再現性を高めるため には,構成因子個別の関与,さらには各因子間の相関性を明 確にする必要があるが,その因子は多数ある⁵⁻²⁴⁾。

そこで本報告では、因子間の相関関係を評価するため、 ニューラルネットワークの教師なし学習モデルの1つである 自己組織化マップを用いた評価方法の導入を提案する²⁵⁾。最 初に、自己組織化マップによる因子間の相関関係について、 評価の可能性を示すため、任意の関数を用いて定量的な検証 を以下の手順で行った。まず、任意の関数をもとに自己組織 化マップの学習を行い、各関数に対応する自己組織化マップ の重み分布を作成した。次に、自己組織化マップの重み分布 の類似性を定量的に判断するため、重み分布同士の類似性を 数値化するとともに、各因子の相関係数との関係について提 示した。

さらに、上記で検証した自己組織化マップによる評価方法 を用い、材料のテクスチャ評価への適用を提案する。本報告 では、工業製品の外観材等に多用されているアルミニウム合 金を試験片材料として取り上げ、その表面にショットブラス ト加工を用いて段階的に異なる表面性状を付与した。そして、 上記で検証した自己組織化マップによる相関関係の評価方法 を用いて、ショットブラスト加工を施したアルミニウム合金 のテクスチャ評価²¹⁾を行い、提案する評価方法の妥当性を検 証した。

2. 自己組織化マップ

自己組織化マップは、Kohonen²⁶⁾によって開発された教師 なし学習を行うニューラルネットモデルである。自己組織化 マップは、多次元の観測データ(入力ベクトル)を反復学習 することにより教師なしでパターン抽出を行い、二次元平面 上の出力ニューロン群に写像する。すなわち、多次元データ をデータ間の位相を保ったまま二次元平面に写像できるため、 教師なしデータのクラスタリングやパラメータの評価が可能 となる。

2.1 アルゴリズム

本報告で用いる自己組織化マップの概略図をFig.1に示す。 入力層に入るk回目の入力ベクトルを $\mathbf{x}_{k} = (x_{kl}, x_{k2}, \cdots, x_{kn}; k=1, 2, \cdots, K)$ とする。nは入力ニューロン数, Kは入力データ組数 である。また、出力層の出力ニューロン y_{ij} ($i=1, 2, \cdots, I, j=1, 2, \cdots, J$)は、入力層すべてのニューロンと重み $\mathbf{m}_{ij} = (m_{ij1}, m_{ij2}, \cdots, m_{ijn})$ を介して接続されている。i, jは二次元に配置した 出力ニューロンの位置であり、I, Jはそれぞれ行と列の最大 値である。そして、この自己組織化マップは以下の①~⑤の 手順で学習する。

- 重みm_{ii}の初期値を乱数で与える。
- ② 式(1)を用いて、入力ベクトル x_k と重み m_{ij} との距離*L*を 計算し、両者が最も類似している、すなわち距離*L*が最小 となる出力ニューロン y_{ij} を探す。このニューロンを勝者 ニューロン $m_c(t)$ とする。ここでt (t=1, 2, ..., T: Tは予め 設定した回数)は学習回数である。

^{*} 原稿受付 平成 30 年 12 月 10 日

^{**} 職業能力開発総合大学校

^{***} 拓殖大学大学院工学研究科博士後期課程(株式会社アトラス)

^{****} 拓殖大学工学部

Fig. 1 Structure of Self-organizing maps.

$$L = \min_{l,i} \left\| \mathbf{x}_k - \mathbf{m}_{li} \right\| \tag{1}$$

 勝者ニューロン及びその近傍にあるニューロンの重みm_{ij}を 式(2)によって、入力ベクトルx_kとの差が小さくなるように 更新する。ここで、hc_{ij}(t)は近傍関数であり、勝者ニュー ロンm_e(t)を中心とするガウス関数で与える。

$$\mathbf{m}_{ij}(t+1) = \mathbf{m}_{ij}(t) + hc_{ij}(t) \{\mathbf{x}_k(t) - \mathbf{m}_{ij}(t)\}$$
⁽²⁾

- ④ 全ての入力 x_kに対して、②、③を繰り返す。以上が1回目の学習である。
- ⑤ ②~④を設定した学習回数 T回繰り返す。

結果として,出力ベクトルy_{ij}と各入力ニューロンに対する 重みm_{ij}が得られ,重みや出力ベクトルは視覚化のため色付け して出力ニューロンに図示される。

2.2 自己組織化マップの重み分布

例として、5×5の25ニューロンに任意の値10個を入力し て得た自己組織化マップの重み分布をFig.2(a)~(d)にそれ ぞれ示す。自己組織化マップの重み分布は色が濃いほど、重 みの値が大きいことを表している。なお、入力値が全て同じ 値であるFig.2(b)及び(c)では重み分布が一色となる。ま た、Fig.2(d)の入力値はFig.2(a)で用いた入力値と逆相関 の関係にあるため、Fig.2(d)の自己組織化マップの重み分布 はFig.2(a)の自己組織化マップの重み分布を回転した場合の 配色と類似している。

3. 自己組織化マップを用いた因子の評価方法

本報告では、自己組織化マップの特徴である出力ニューロ ンの色(重み)と領域形状の類似性に着目し、因子間の相関係 数との関係について評価する。自己組織化マップの学習およ び重み分布の作製には Matlab R2016bを用いた。入力データ は Table 1 に示す任意の関数とし、入力数は100とした。そ して、出力層 25 ニューロン、学習回数 200 回の自己組織化

(b) Sample2

マップをそれぞれ作成した。学習を行って作成した自己組織 化マップの重み分布を Fig. 3に示す。入力した値によって重 み分布の領域形状の類似性が直観的に確認できる。

自己組織化マップでは、入力パターン間の距離を保存した 写像が行われる²⁶⁾。そこで自己組織化マップによる写像結果 を表す重み分布の類似性を定量的に評価し、各入力データと の相関関係について調べた。ここで、重み分布の類似性を与 える指標として、得られた重み分布をそれぞれ画像として捉 え、他の画像と対応するピクセル毎の色の違いを数値化した 値(以下, Image differenceとする。)を用いることとする。 Image difference が小さい時 (最小値は1), 2つの画像の類似 性が高い、 すなわち出力ニューロンの色 (重み) と領域形状の 類似性が高いことを意味する。そこで Fig. 3から 2組を選ん で比較した結果を Fig. 4 に示す。Fig. 4 (a) は, Fig. 3 (a) と (c)の比較である。図の上部が自己組織化マップの重み分布, 下部が 2組の入力データの関係を示している。この図では, 入力した値が等しいため、入力データ間の相関係数 r=1.00 である。また、自己組織化マップの色(重み)と領域形状も 一致しているように見える。このとき Image diffrerence=1 であることから,両分布は完全に一致していると言える。次 に, Fig. 3 (a) と (d) (xとy=x²で得られる値を入力データとし た結果)の比較を Fig. 4 (b) に示す。入力データ間の相関係数 (r=0.97) は前述に示した Fig. 4 (a) の相関係数 (r=1.00) に比 べてやや小さいだけであるが, Image difference=35と明ら かに大きくなっており、この値の違いが入力データ間の相関 係数のわずかな違いを明確に表現していることが分かる。一 方,入力データ間の相関係数が小さい場合として,Fig.4(c) 及び Fig. 4 (d) に, xと y=sin (x), xと y=1/x で得られる値を 入力データとした結果を示す。それぞれ、相関係数 r=-0.05 に対してImage difference=448, r=-0.48 に対して Image difference=536である。これらの結果より、入力データ間の 相関係数が小さい場合, Image differenceは非常に大きくな ることが分かる。Fig. 5に Fig. 3で示した重み分布の全ての 2組について、入力データ間の相関係数と重み分布のImage differenceとの関係を示す。全ての組において、入力データ の相関係数rが1に近くなるとともにImage differenceは1に 近づく。逆に、相関係数rが小さくなるとImage differenceは 非常に大きな値を取ることが分かる。このことから、自己組 織化マップの重み分布のImage differenceを用いることによ り、入力データ間の相関を明確に判断できると言える。しか し、逆相関の場合(r <0)も Image difference は非常に大きく なるため、自己組織化マップの重み分布を回 転して比較する 必要がある。

Image differenceによる入力データ間の相関の判断例を, Fig. 3に示した入力データを用いて示す。Fig. 6 (a) 及び Fig. 6 (b)に, $y=x^2 \ge y=\log(x)$, $y=x^{.05} \ge y=\log(x)$ で得られる値を

Table 1 Input Data.

Input 1	x	1	2	 100
Input 2	<i>y</i> = 1	1	1	 1
Input 3	y = x	1	2	 100
Input 4	$y = x^2$	1	4	 10000
Input 5	$y = x^{0.5}$	1	1.41	 10
Input 6	$y = \sin(x)$	0.84	0.91	 -0.51
Input 7	$y = \cos(x)$	0.54	-0.41	 0.86
Input 8	$y = \tan(x)$	1.56	-2.19	 -0.59
Input 9	$y = \log(x)$	0	0.30	2
Input 10	y = 1/x	1	0.5	 0.01
Input 11	$y = e^x$	2.71	7.39	 2.69E + 43
Input 12	<i>y</i> = 100	100	100	 100

入力した結果を示す。自己組織化マップの重み分布の Image difference はそれぞれ 161,86 とどちらもその値は小さい ことから,それぞれの入力データ間に相関関係があると言え

る。さらに, Fig. 6 (b)の関係は Fig. 6 (a)と比較して, Image differenceが小さいため, より強い相関を示していることが 分かる。このことは, 各図に示した入力データ間の相関係数 rと同じ結果である。

本報告では、自己組織化マップの重み分布の類似性を Image differenceという1つの値にして入力データ間の相関 を調べている。したがって、Image differenceを使うことの 優位性は高くないが、この値に加え、重み分布の様子、すな わち回転すると一致する重み分布や重み分布の偏りなどを考 慮することによって、入力データ間における負の相関や特異 な類似性について調べる有効な指標になると考えられるため、 Image difference の大きさと相関度に関する検討に合わせて 進めていく。

以上の結果より,ニューラルネットワークの教師なし学習 である自己組織化マップによる因子の相関関係について評価 可能であることを示した。

自己組織化マップを用いたアルミニウム合金のテクスチャ 評価²¹⁾

外観設計の再現性を高めるためには、構成因子個別の関与、

さらには各因子間の相関性を明確にする必要がある。例えば、 表面の凹凸形状を評価する表面性状パラメータ ^{27, 28)}は約40 種 類あるため、相関関係を全て把握することは困難である。そ こで自己組織化マップを用い、各表面性状パラメータの相関 関係及び表面色、光沢度との関係について調べた。

4.1 供試材及び測定方法

供試材にはアルミニウム合金A2017を用いた。供試材の寸 法は70×70×5mm³とし、表面には工業製品のバリ取りや装 飾等で使用されているガラスビーズを投射材としたショットブ ラスト加工を施した。このとき,投射材の粒度を#80, #150, #300, #600及び#800と変え, さらにショットブラスト加工時 の加工圧及び投射距離を調整することにより、算術平均粗さ Raが0.1~1.0µmの範囲で段階的に異なる表面にした。なお、 各々の測定直前には試料表面の汚れや油分を除去するため, アセトンで洗浄した。表面性状パラメータの測定には、超精 密非接触三次元表面性状測定機 Talysurf CCI6000 (アメテッ ク(株)製)を用いた。測定面積は 0.865×0.865mm²とした。表 面色の測定には、分光測色計 CM-2600 (コニカミノルタホー ルディングス(株)製)を用いた。測定径は 3mmとし、光源 入射角を 8°, 光源は白色光常用光源 D₆₅ とした。測定方式は, 正反射光を除去し、表面状態の影響を受けやすく、目視に近 い測定結果を得ることが可能である SCE 方式とした。表面 色の評価には、L*a*b*表色系²⁹⁾を用いた。正反射率の測定に は、光沢度計 mirror-TRI-gloss (BYK-Gardner 社製) を用い た。光源の入射角度は60°とした。なお、正反射率の値は入 射角 60°のとき³⁰⁾の光沢度計における基準面(屈折率 1.567 の ガラス面)の正反射率10%が光沢度 Gs (60°) 100%となるこ とより, 光沢度 Gs (60°)の値を 10 で除して算出した 20)。

4.2 算術平均高さと表面性状パラメータとの比較

表面の凹凸形状の特徴付けを行うため、一般的に使用され る算術平均粗さRaを三次元に拡張したパラメータである算 術平均高さSaと表面性状パラメータとを比較した。まず、算 術平均高さSaとスキューネスSsk及びクルトシスSku との関 係をFig. 7に示す。Sskは平均面を中心とした対称性を示す。 また、Skuは表面の鋭さを表しており、高さ分布を特徴付け る。Saの値が増加するとともにSskは僅かに増加し、Ssk = 0となった。それに対して、SkuはSaの値が増加するとともに 僅かに減少し、Sku = 3となった。すなわち、表面の凹凸形状 の高さ分布が平均面に対して対称、かつ正規分布であること を示している。

次に,負荷曲線パラメータ²⁸⁾を用いて表面の凹凸形状の特 徴付けを行った。負荷曲線パラメータを用いることで,初期 摩耗により削られる領域と表面に塗布した液体が溜まる領域 について評価可能である。本報告では,負荷面積率 Smr 1,

Fig. 5 Relationship between image difference and correlation coefficient *r*.

Fig. 6 Correlation between two data groups by self- organizing map.

*Smr 2*を用いた。*Sa*と*Smr 1*及び*Smr 2*との関係を Fig. 8に 示す。*Smr 1*は*Sa*と共に増加し, *Sa*=0.4 µm 以降はほぼ値が 収束した。それに対して, *Smr 2*は*Sa*と共に増加し, *Sa*=0.5 µm 以降は低下する傾向が見られた。

4.3 算術平均高さと明度及び正反射率との関係

算術平均高さ*Sa*と明度*L**及び正反射率*Gs*(60°)/10との関係をFig.9に示す。*Sa*の低下に伴い、*L**も低下する傾向がある。すなわち、表面の粗さが小さくなるとともに暗くなることを示唆している。それに対して、*Gs*(60°)/10に与える*Sa*の低下による影響は小さいが、*Sa*=0.2µm程度より小さくなると*Gs*(60°)/10は増加する傾向が見られた²⁴)。

4.4 自己組織化マップによるテクスチャ評価

自己組織化マップの特徴である出力ニューロンの色(重み 分布)と領域形状の類似性に着目し、実験により得られた各 パラメータの相関関係について調べた。自己組織化マップは 出力層25ニューロン、学習回数200回とした。学習を行って 作成した自己組織化マップの重み分布をFig.10に示す。

まず, Fig. 7に示した算術平均高さSa, スキューネスSsk及 びクルトシスShuとの関係について, Fig. 10 (a), (b)及び (c) に 示す自己組織化マップの重み分布を比較した。 $Sa \ge Ssk$ では Image difference=294, $Sa \ge Sku$ ではImage difference=538 となり, 自己組織化マップによる重み分布の類似性は低いた め, 因子間の相関は低い。このとき, $Sa \ge Ssk \ge On$ 相関係数 はr=-0.71, $Sa \ge Sku \ge On$ 相関係数はr=0.67であり, 両者と も相関係数が低い。

さらに、Fig. 9に示した算術平均高さSaと明度 L^* 及び正 反射率Gs (60°)/10との関係について、Fig. 10 (a), (f) 及び (g) に示す自己組織化マップの重み分布を比較した。Saと L^* で はImage difference=319となり、自己組織化マップによる 重み分布の類似性は高いため、因子間の相関は高い。このと きSaとSmr 2 との相関係数はr=0.97 と極めて高い。それに 対して、SaとGs (60°)/10はImage difference=495 であるた め、自己組織化マップによる重み分布の類似性は低く、因子 間の相関は低い。しかし、SaとGs (60°)/10との相関係数は r=-0.92 と極めて高い負の相関関係である。そこで、自己組 織化マップによる重み分布を回転させて類似性を調べると, Image difference=240となり,自己組織化マップによる重み 分布の類似性は高くなる。すなわち,逆相関の関係の場合, 自己組織化マップによる重み分布を回転させることで重み分 布の類似性は高くなる。

Fig. 7 Relation among arithmetic mean height Sa, skewness Ssk and kurtosis Sku.

Fig. 8 Relation among arithmetic mean height Sa, upper material ration Smr1 and lower material ration Smr2.

Fig. 9 Relation among arithmetic mean height Sa, lightness L* and specular reflection Gs (60°)/10.

最後に、明度L*及び正反射率Gs (60°)/10と相関の高い因 子を自己組織化マップによる重み分布の類似性を用いて調べ た。まず、明度L*の自己組織化マップによる重み分布と類似 性の高い因子はスキューネス Ssk (Image difference=93) 及び 負荷面積率 Smr 2 (Image difference = 54) であった。すなわ ち, 自己組織化マップによる重み分布の類似性が極めて高く, 因子間の相関が高いことを示している。このとき、相関係数r はそれぞれ0.98及び0.97と極めて高い正の相関関係が見られ た。また, 正反射率 Gs(60°)/10 とスキューネス Ssk は Image difference=564, 正反射率 Gs(60°)/10と負荷面積率 Smr 2は Image difference=609 であった。これらは自己組織化マッ プによる重み分布を回転させることによりそれぞれImage difference=398, 429となる。このとき, 相関係数rはそれぞ れ-0.90及び-0.92と極めて高い負の相関関係が見られた。

スキューネスSsk及び負荷面積率Smr 2と明度L*及び正反 射率Gs (60°)/10の関係をFig. 11及び12にそれぞれ示す。ス キューネスSskが負の値から0に近くなる、すなわち細かい 谷が多い表面から高さ分布が上下に対称な表面になるととも に、その表面色は明るくなるが、正反射率は低下する。また、 負荷面積率Smr2が高くなる、すなわち、谷部の面積が増加 するとともに、その表面色は明るくなるが、正反射率は低下 する。このように、種々の表面性状パラメータを用いること によって、ショットブラスト加工表面の特徴を詳細に表すこ とが可能である。

以上の結果より、自己組織化マップの重みの分布の類似性 を評価することで、各因子の相関関係が評価可能であること を示した。

5. 結言

本報告では、ニューラルネットワークの教師なし学習であ る自己組織化マップによる因子間の相関関係の評価方法を提 案した。まず、既知の関数で得られる数値を入力データとし た自己組織化マップの重み分布を複数の関数について作成し た。次に、得られた重み分布について、2組ずつ分布間の類似 性を示す数値(Image difference)を算出し、この数値とそれぞ れの入力データ間の相関係数を比較した。その結果, Image differenceによって入力データ間の相関が明確に評価できるこ とを明らかにした。さらに、本手法がショットブラスト加工 を施したアルミニウム合金のテクスチャ評価因子の相関にも 適用できることを例証した。

謝辞

本報告を進めるにあたり、新東工業株式会社及び アメテッ ク株式会社テーラーホブソン事業部に御高配と御指導を頂き ました。さらに、本報告をまとめるにあたり、元拓殖大学工 学部 川端康介氏に御指導を頂きました。ここに記して、関係

Fig. 11 Relation among skewness Ssk, lightness L* and specular reflection Gs (60°)/10.

Fig. 12 Relation among lower material ration Smr2, lightness L* and specular reflection Gs (60°)/10.

各位に感謝の意を表します。

参考文献

- 小坂田宏造,日本塑性加工学会,第8回材料加工戦略会 議「海外技術戦略」,pp.1-16,2010.
- 伊東誼,日本塑性加工学会,第8回材料加工戦略会議「海 外技術戦略」,pp. 31-54, 2010.
- 3) 日経BP社, 日経デザイン, Vol. 5, pp. 66-71, 2003.
- 4) 伊東誼, 生産文化論, 日科技連, pp. 1-19, 1997.
- 相沢正,渡辺哲夫,西条博之,川上元郎,"光沢度と色度 との相関性の視覚的評価に関する研究(1)光沢度が色に およぼす影響(その1)",製品科学研究所報告, Vol. 63, pp. 23-32, 1970.
- 金正周,内藤郁夫,鈴木信康,金子かつこ,"日韓比較 による伝統紙の質感評価"デザイン学研究, Vol. 46, No. 3, pp. 1-8, 1999.
- 7)内藤郁夫,鈴木信康,金子かつこ,"明度の塗装質感への 影響"デザイン学研究, Vol. 47, No. 1, ppp. 25-34, 2000.
- 8) 宮川松男,小豆島明,山中薫,"塑性加工品表面の観察", 伸銅技術研究会誌, Vol. 19, pp. 155-164, 1980.
- 安達正明,北川洋一,松本哲也,稲部勝幸,"半導体レー ザを用いた段差を持つ粗面の形状計測",精密工学会誌, Vol. 65, No. 3, pp. 418-422, 1999.
- 西川尚之,高安拓郎,岩田耕一,"二波長位相シフト干 渉法による微細表面形状計測",精密工学会誌,Vol. 57, No. 9, pp. 1633-1638, 1991.
- 小豆島明,岸輝男,宮川松男, "レーザスペックリングに よる表面検査",塑性と加工, Vol. 25, No. 284, pp. 765-771, 1984.
- 川邉和宏,米原牧子,木原幸一郎,磯野宏秋,木嶋彰, 杉林俊雄,"洋白C7541の表面粗さが光沢度と表面色に 及ぼす影響",銅と銅合金, Vol. 46, No. 1, pp. 248-252, 2007.
- 米原牧子,木原幸一郎,磯野宏秋,木嶋彰,吉森茂,杉 林俊雄,"表面粗さがタフピッチ銅C1100の表面色に及ぼ す影響",銅と銅合金, Vol. 42, No. 1, pp. 340-344, 2003.
- 14) 米原牧子,木原幸一郎,磯野宏秋,木嶋彰,杉林俊雄, "アルミニウム合金の表面色によるテクスチャ評価方法", 軽金属, Vol. 54, No. 2, pp. 45-50, 2004.
- 15) M. Yonehara, T. Matsui, K. Kihara, H. Isono, A. Kijima and T. Sugibayashi, "Evaluation Method of Surface Texture by Surface Roughness based on Geometrical Product Specifications (GPS)", Mater. Trans. JIM, Vol. 45, No. 4, pp. 1019-1026, 2004.
- 16) M. Yonehara, T. Matsui, K. Kihara, H. Isono, A. Kijima and T. Sugibayashi, "Evaluation Method of Surface

Texture by Surface Roughness based on Geometrical Product Specifications (GPS)", Mater. Trans. JIM, Vol. 45, No. 4, pp. 1027-1032, 2004.

- 17)米原牧子,木原幸一郎,香川美仁,磯野宏秋,杉林俊雄,
 "5052アルミニウム合金の光沢度および表面色に及ぼす凹 凸形状の影響",軽金属, Vol. 55, No. 1, pp. 15-19, 2005.
- 18)米原牧子,木原幸一郎,磯野宏秋,杉林俊雄,井形直弘, "純チタンおよびTiNコーティング面の光沢度と表面色 に及ぼす表面粗さの影響",軽金属, Vol. 55, No. 12, pp. 668-672, 2005.
- M. Yonehara, K. Kihara, Y. Kagawa, H. Isono, and T. Sugibayashi, "Effect of Topography on Glossiness and Surface Color for a 5052 Aluminum Alloy", Mater. Trans. JIM, Vol. 46, No. 10, pp. 2197-2203, 2005.
- 米原牧子,熊井真次,磯野宏秋,杉林俊雄,井形直弘, "5052アルミニウム合金板材の陽極酸化処理表面における 光沢度と表面色に及ぼす表面粗さの影響",軽金属, Vol. 56, No. 8, pp. 429-434, 2006.
- 吉田瞬,大竹佳織,川邉和宏,磯野宏秋,香川美仁,杉 林俊雄,"ショットブラスト加工表面のテクスチャ評価", 軽金属, Vol. 61, No. 5, pp. 187-191, 2011.
- 22) 米原牧子,吉田瞬,磯野宏秋,杉林俊雄,"シボ面における 3D 表面性状パラメータを用いた粗さ感の定量化",人間工学特別号, Vol. 51, pp. 264-265, 2015.
- 23) 米原牧子,熊井真次,磯野宏秋,木原幸一郎,杉林俊雄, "銅及び銅合金の色とテクスチャ評価",銅と銅合金,Vol. 55, No. 1, pp. 1-5, 2016.
- 24) 米原牧子, "表面性状パラメータを用いた質感の定量化手法", 精密工学会誌, Vol. 82, No. 11, pp. 944-947, 2016.
- 25) Y. Wakabayashi, K. Chanthasen, S. Yoshida, Y. Kawabata, T. Ogawa and T. Sugibayashi, "Texture evaluation of transparent acrylic resin Using Self-organizing maps", The 20th International Conference on Artificial Intelligence ICAI'18, pp. 289-292, 2018.
- T. kohonen, Self-Organizing Maps, Springer Verlag, 1995.
- 27) ISO 25178, Geometric Product Specifications (GPS)-Surface texture: areal, 2012.
- 28) ISO 13565-2, Geometrical Product Specifications (GPS). Surface texture: Profile method; Surfaces having stratified functional properties Part 2: Height characterization using the linear material ratio curve, 1996.
- 29) JIS Z 8741, 1997.
- 30) JIS B 0671-2, 2001.